

Application Notes: InTime

1

Scripting with TCL in InTime
AN:PIN003

Introduction

This application note describes and provides an example of how to develop and run custom Tcl

scripts to automate the InTime software. There are several ways of running InTime; some users like to

use the graphical user interface and others prefer command-line scripting. Advanced users can create

custom Tcl scripts to automatically try different InTime Recipes and just keep InTime running

optimizations in the background.

After following the steps in this application note, you should be able to modify the example script for

your needs.

Running Tcl in InTime

InTime provides a Tcl Console for you to enter standard as well as InTime-specific Tcl commands.
The Tcl Console is located at the bottom right-hand corner of InTime GUI as shown in Figure 1.

Figure 1. InTime GUI

The Tcl commands provided by InTime are documented in
(http://www.plunify.com/docs/intime/flow_properties.html) or you can type help in the Tcl Console as

shown in Figure 2 to display the available commands.

http://www.plunify.com/docs/intime/flow_properties.html

Application Notes: InTime

2

Figure 2. List of InTime-provided Tcl commands

Example: Custom Tcl script to execute multiple recipes

This custom Tcl script automatically executes multiple InTime recipes in the order below (for Quartus).

When each recipe completes, the script sets the revision with the best timing result as the parent

revision for the next recipe.

To try the sample Tcl script, download an_pin003_autorun_multi_recipes.zip from here:

https://support.plunify.com/en/wp-content/uploads/sites/5/2017/06/autorun_multi_recipes.zip
 and carry out the steps below. The zip file contains:

1. autorun_multi_recipes.tcl

2. eight_bit_uc_quartusii_16p0_std folder containing a sample Quartus project

3. eight_bit_uc_vivado_2016p4 folder containing a sample Vivado project

For the purpose of this application note, we will use the Quartus example.

Run from the InTime Tcl Console

To run the Tcl script in an InTime Tcl console,

1. Extract an_pin003_autorun_multi_recipes.zip

2. Start InTime and open the

<working_dir>/eight_bit_uc_quartusii_16p0_std/eight_bit_uc.qpf project

3. Run the autorun_multi_recipes.tcl script at the Tcl Console:

https://support.plunify.com/en/wp-content/uploads/sites/5/2017/06/autorun_multi_recipes.zip

Application Notes: InTime

3

source ../autorun_multi_recipes.tcl

When it finishes, you should able to see the result in Figure 3.
(1)

 As shown, the script stops the current

recipe run once it finds a revision that meets the recipe's goal, Total Negative Slack (TNS), of -2500ns

for the Hot Start recipe in this example. Next, it sets that revision as the parent revision for the next

recipe. This process repeats until the last recipe is run, or InTime meets the subsequent goal of TNS

= 0ns.

Figure 3. InTime result after example script run completed

Note: You can use intime.sh -help to find out more details about InTime command-line switches.

Run from Command-line

To run the Tcl script in a batch script or command line,

1. Extract an_pin003_autorun_multi_recipes.zip

2. At command-line, change directory to eight_bit_uc_quartusii_16p0_std where the

Quartus project is located

cd eight_bit_uc_quartusii_16p0_std

3. Run the following command at the command line

For Linux

<intime_installed_dir>/intime.sh -project eight_bit_uc.qpf -mode batch -

s ../autorun_multi_recipes.tcl -toolchain quartusii -toolchain_version 16.0.0 -

tclargs “-output_dir <output directory>”

For Windows

<intime_installed_dir>\bin\intime.exe -project eight_bit_uc.qpf -mode batch -

s ../autorun_multi_recipes.tcl -toolchain quartusii -toolchain_version 16.0.0 -

tclargs “-output_dir <output directory>”

Application Notes: InTime

4

After running the script, you should see that it starts to compile the project as shown in Figure 4a.

Figure 4a. Output at command-line terminal after ran the example script

When the script runs finishes, it will output the results at the output directory. If you have not specify

the output_dir option when executing the autorun_multi_recipes.tcl, then you should be

able to see a folder named results generated in the project directory

<working_dir>/eight_bit_uc_quartusii_16p0_std/results as shown in Figure 4b.

Otherwise, the results will be kept at the output directory that you specified.

Under the output directory, you should see pass or fail file. If the end goal is met, you should able

to see pass file in the output directory. Otherwise, you should see a fail file instead. The

best_<job_id>_<strategy_name>.tcl script is an exported strategy Tcl script which

reproduces the best timing result among the generated strategies.

Meanwhile, the folder export_strategies_tcl contains the exported strategy Tcl scripts of all the

other strategies that are compiled successfully.

Note that the output directory is cleaned up whenever this example script is executed. Please back up

this folder if necessary.

Figure 4b. Results directory after example script run completed

Understanding the example Tcl script

The autorun_multi_recipes.tcl example script is divided into five different parts:

A. Variable declaration for important information like the recipes to use, TNS goal, number of

runs per rounds, etc.

Application Notes: InTime

5

B. InTime flow configuration and recipe execution.

C. Results verification to either stop or execute subsequent recipes.

D. Export strategies to Tcl scripts.

E. Summarize and print results.

Variable Declaration

Figure 5a describes what recipes to use and in what order of execution. In this example (Quartus), the

order of execution is:

Hot Start -> InTime Default -> Deep Dive -> Seed Effort Level Exploration

You can modify this sequence to use different recipes or to change the order of execution.

Define order of recipes to execute.

-> Type 'flow recipes -supported' in Tcl console to show all available recipe's name

set current_toolchain [project info toolchain]

if { [string equal "$current_toolchain" "quartusii"] } {

 # Execution Order : hot_start > intime_default > deep_dive >

seeded_effort_level_exploration

 set recipes_list [list "hot_start" "intime_default" "deep_dive"

"seeded_effort_level_exploration"]

} elseif { [string equal "$current_toolchain" "vivado"] } {

 set recipes_list [list "intime_default" "deep_dive" "vivado_explorer"

"extra_opt_exploration"]

} else {

 set recipes_list [list "intime_default"]

}

Figure 5a. Define recipes and their execution order

Figure 5b shows how to define the goals for Total Negative Slack(TNS), Worst Negative Slack (WNS)

for each recipe, number of runs per round, number of rounds. end_tns_goal contains the final TNS

goal. Upon reaching the final TNS goal, there can be various follow-on actions, for example generate

bitstream, copy files, and so on.

The recipe_target_result_tns(…) defines a recipe goal that tells InTime to switch to a

subsequent recipe if it meets this TNS target. Typically, the earlier goals are set at a worse level

compared to the later goals.

Define end goal

set end_tns_goal 0

set end_wns_goal "*" ; #Don't Care

Define tns goal for each recipe run

set recipe_target_result_tns(hot_start) "-2500"

set recipe_target_result_tns(intime_default) "-1000"

set recipe_target_result_tns(deep_dive) "-500"

set recipe_target_result_tns(auto_placement) "0"

set recipe_target_result_tns(seeded_effort_level_exploration) "0"

set recipe_target_result_tns(vivado_explorer) "0"

set recipe_target_result_tns(extra_opt_exploration) "0"

Define runs_per_round for each recipe run

set recipe_target_runs_p_round(hot_start) 50

set recipe_target_runs_p_round(intime_default) 10

set recipe_target_runs_p_round(deep_dive) 10

Application Notes: InTime

6

set recipe_target_runs_p_round(seeded_effort_level_exploration) 10

set recipe_target_runs_p_round(auto_placement) 10

set recipe_target_runs_p_round(vivado_explorer) 10

set recipe_target_runs_p_round(extra_opt_exploration) 10

Define number of rounds for each recipe run

set recipe_target_rounds(hot_start) 1

set recipe_target_rounds(intime_default) 3

set recipe_target_rounds(deep_dive) 1

set recipe_target_rounds(seeded_effort_level_exploration) 2

set recipe_target_rounds(auto_placement) 1

set recipe_target_rounds(vivado_explorer) 1

set recipe_target_rounds(vivado_placement_exploration) 1

set recipe_target_rounds(extra_opt_exploration) 1

Figure 5b. Define end goal, recipe goal, runs per round and rounds

Flow Execution and Configuration

The InTime flow configuration and recipe execution are outlined in Figure 5c and 5d. In Figure 5c,

flow reset is used to reset the internal flow history. It is a recommended practice to always reset

the internal flow history before running any recipe.

flow set <property> <value> is the command to configure InTime flow settings. For example,

setting flow set control_stop_when_goal_met to true enables InTime to stop the current

running recipe when the goal is met. Otherwise, InTime allows the recipe to continue running even

after the goal is met.

Setting flow set control_create_bitstreams to true enables bitstream files to be created

for every revision. Note: This takes up more time to complete each strategy.

Configure InTime Flow settings

-> Type 'flow properties' in Tcl console to shows all the available flow property to

configure

flow reset ; # Reset Intime internal flow

flow restore_defaults ; # Restore all flow property to default value

flow set run_target local ; # Set to run strategies on local machine

flow set goal speed_tns ; # Set goal type as speed_tns for timing optimization

flow set concurrent_runs 3 ; # Number of builds to run in parallel

flow set control_stop_when_goal_met true ; # Stop current recipe run when goal is met

flow set control_create_bitstreams false ; # Set to false to save compute time

Figure 5c. InTime flow configuration

To start a recipe, use the command flow run_recipe <recipe_name> as shown in Figure 5d. If

the recipe run completes, the flow run_recipe command returns 0, otherwise it returns 1.

Run the current recipe

if { [catch { flow run_recipe $current_recipe }] } {

 puts "ERROR: Recipe $current_recipe failed, continuing with the rest of the flow...

${::errorInfo}"

 set recipe_run_fail 1

 set return_code 1

}

Figure 5d. Run recipe command

Application Notes: InTime

7

Results Verification

Figure 5e shows how to verify your result. In this section, the script checks if any revision in this round

meets the target goal. If yes, it stops, otherwise it continues to execute the subsequent recipes until

all user-defined recipes are executed.

Check if the end goal was met. Stop this script run if goal met

set job_id [flow get local_job_id]

if { $flow_continue && !$recipe_run_fail } {

 puts "INFO: Checking results in $current_recipe recipe run \(job $job_id \) "

 results clear

 results add job $job_id

 set best_revision_name [lindex [results summary best -list] 0]

 catch { strategy unset_active }

 catch { strategy set_active $best_revision_name $job_id }

 set best_revision_tns [strategy results -field "TNS"]

 set best_revision_wslack [strategy results -field "Worst Slack"]

 puts "INFO: -> Best result in job \($job_id\) is $best_revision_name revision with

TNS = $best_revision_tns and Worst Slack = $best_revision_wslack "

 if { [is_job_met_criteria $job_id $end_tns_goal $end_wns_goal] } {

 puts "INFO: -> Goal met! .. exiting optimization"

 set flow_continue 0

 set goal_met 1

 }

}

Figure 5e. Verify the results of child revisions for each recipe run

Export Strategies into Tcl Scripts

Figure 5f shows how to export strategy settings for each strategy into a Tcl script. As shown in Figure

5f, the command strategy export <export_tcl_name> -script_tcl is used to export

settings for the current strategy into a Tcl script file. In this example, the script only exports strategies

that compiled successfully, using the command results summary success -list to obtain a list

of such strategies. You must always set the “active strategy” using the command strategy

set_active <strategy_name> <job_id> before running the strategy export

<export_tcl_name> -script_tcl command.

Export strategies settings in tcl for success revisions

results clear

catch { strategy unset_active }

set count 0

foreach id $jobs_ran {

 results add job $id

 set stratname_list_success [results summary success -list]

 set best_revname_per_job [lindex [results summary best -list] 0]

 foreach stratname $stratname_list_success {

 strategy set_active $stratname $id

 strategy export "$export_settings_tcl_dir/job${id}_${stratname}.tcl" -script_tcl

 catch { strategy unset_active }

 }

Figure 5f. Export strategies that compiled successful into Tcl scripts

Application Notes: InTime

8

Results Summary

Lastly, print a summary of the results. Select all the relevant results using their job IDs: results add

job <job_id> , then print revisions that compiled successfully via results summary success

and save the output into
<working_dir>/eight_bit_uc_quartusii_16p0_std/results/summary_result.rpt

Export summary of results in summary_result.rpt

foreach id $jobs_ran {

 results add job $id

}

set summary_result [results summary success]

if { [catch { open $summary_result_rpt w } fh] } {

 puts "ERROR: Couldn't open file: $fh"

 set return_code 1

} else {

 puts $fh "$summary_result"

 catch { close $fh }

}

Figure 5g. Print summary of obtained results

Conclusion

InTime provides custom Tcl scripting capabilities to enable users to automate their InTime runs. For

more detailed information about the Tcl commands, please refer to the online reference at

http://www.plunify.com/docs/intime/flow_properties.html.

http://www.plunify.com/docs/intime/flow_properties.html

Application Notes: InTime

9

Document Revision History

Table 1. Revision history for this application note

No Date Changes Made

3 01 July 2017 1. Enabled autorun_multiple_recipes.tcl to return 0 if the

script runs OK otherwise, return 1.

2. Added option output_dir for autorun_multiple_recipes.tcl script

to allow user to control the output directory path (Default:

<project directory>/results).

2 06 June 2017 1. Added version 2.0 of

an_pin003_autorun_multi_recipes.zip. In Version 2.0, the

following features are added into

autorun_multi_recipes.tcl :

● Generate pass or fail file to indicate if the end_goal was

met or not.
● Export strategies for those compiled successful into Tcl scripts.
● Generate a separate Tcl script for the strategy which gave the

best timing result.
● Generate a summary of results into a file named

summary_result.rpt.

2. Added new sub-section "Export strategies into Tcl Scripts" under

"Understanding the example Tcl script".

3. Corrected typo for intime.sh path. The path should be

<intime_installed_dir>/intime.sh instead of

<intime_installed_dir>/bin/intime.sh

1 05 June 2017 Initial version

