Application Notes: InTime

PLUNIFY Scripting with TCL inAIQ;I]LIrQOe?)

Introduction

This application note describes and provides an example of how to develop and run custom Tcl
scripts to automate the InTime software. There are several ways of running InTime; some users like to
use the graphical user interface and others prefer command-line scripting. Advanced users can create
custom Tcl scripts to automatically try different InTime Recipes and just keep InTime running
optimizations in the background.

After following the steps in this application note, you should be able to modify the example script for
your needs.

Running Tcl in InTime

InTime provides a Tcl Console for you to enter standard as well as InTime-specific Tcl commands.
The Tcl Console is located at the bottom right-hand corner of InTime GUI as shown in Figure 1.

3 wigha bit_uc.qpf - Punily InTime v2.3.0 (kM) T4CEEEFBOYS) - (u] x
Fle ComentProect View Melp
\) Start Recps Reads Hep
Angyss Suppant
Redpe: InTime Dsfsult * Carent Project: O jusrsfostangiaglouston secoe flow_deraioghe bt uc gf Detals &
{Have 0-300 resls) Perfors frst Dee
Calibe ation, axpiordion and cptintahon of your - Wort Wort Worst Warst *
desin. Mrs Selaly... Huteey Change ~ 2TNS Shek Sewp Hold Pulse Width foes Power Fenax Runtime oo o
Cablwate Desgn © No previous resadts exut for this design.

O Chck "Sant Recipe™ to begin -

o
Analize Rocgoe *
"
< »
O Ths grojeet cortand 4 stde rmascn, "o, Il strategms wil be Based on thas reviion, X
Praperties: @ & Welcoms te Munify InTime Client »2.3.0 (Build Yefcicd)
5 amine wessages vill be Logged to Co\UsersthI0R\ . pluns fy \W102_THCEIREFECHS\ Loy \ Antine. Loy

Fun Targer Loc " | Ursng licemse file *C:iProgres Fales\Plunt fyiLhicense)cerses. 13c" regirmared for product “inTtime”
Numbser OF Runy

Runs Pes Bound 10 plunt fy> searce *Cl/Pzogram Files/Plunify/InTise/vi. 3 O/bias. Jeczipts/itastup.tel”
PIVOA EY> Pradeor opan “DI/ISR s/ 00 any g/ custon_conipe_tlov_dens Seight _bit_we, qp(® ~Soolabain_version from_Llest 3

Roundy ! Successtully cpened project D:/users/ooteng/bug/custon_recipe_flaw_deme/eight Bit_uc. gt

Concurvem R... 3 plumstyr |
Gaah

Recge Gosl Spred - TG

Gosl Rared Tar., 000 < >
Purant Bnvisicn v Sossonkog L tswees [SebctedResits 1) 1o Cornoke

Figure 1. InTime GUI

The Tcl commands provided by InTime are documented in
(http://www.plunify.com/docs/intime/flow_properties.html) or you can type help in the Tcl Console as
shown in Figure 2 to display the available commands.

[N

http://www.plunify.com/docs/intime/flow_properties.html

Application Notes: InTime

Successfully opened project D:/users/ootang/bug/custon recipe flow demo/eight bit_uc.gpf.
plunify> help
Connands
exit: Exit InTime
flow: Control and execute the InTime flow
flow_steps: Allows execution of individual steps in the InTime flow
help: Displays this help nessage
history: Shows the commands history
job: Operations on existing jobs
license: License management functions
log: Log messages to the InTime session log
nigc: Miszcellaneous haelper functions
nsgbox: Show or get feedback from user using & message box
project: Details and control of the open wvendor project
resulcs: Provides details about the current results set
run_target: Operations to configure, test and perform actions specific to different run targets
straveyy: Provides details of the currently activae strategy/result
vendors: Allows configuration of vendor tool setctings
plunity>|
<
| Session Log) Issues I.| Selacted Results 11 Tel Console

Figure 2. List of InTime-provided Tcl commands

Example: Custom Tcl script to execute multiple recipes
This custom Tcl script automatically executes multiple InTime recipes in the order below (for Quartus).

Seed Effort
Hot Start Default Deep Dive Level
Exploration

When each recipe completes, the script sets the revision with the best timing result as the parent
revision for the next recipe.

To try the sample Tcl script, download an_pin003 autorun multi recipes.zip from here:
https://support.plunify.com/en/wp-content/uploads/sites/5/2017/06/autorun_multi_recipes.zip
and carry out the steps below. The zip file contains:

1. autorun multi recipes.tcl
2. eight bit uc quartusii 16p0_std folder containing a sample Quartus project
3. eight bit uc vivado 2016p4 folder containing a sample Vivado project

For the purpose of this application note, we will use the Quartus example.
Run from the InTime Tcl Console
To run the Tcl script in an InTime Tcl console,

1. Extractan pin003 autorun multi recipes.zip

2. Start InTime and open the
<working dir>/eight bit uc quartusii 16p0_std/eight bit uc.qgpf project

3. Runthe autorun multi recipes.tcl script at the Tcl Console:

https://support.plunify.com/en/wp-content/uploads/sites/5/2017/06/autorun_multi_recipes.zip

Application Notes: InTime

source ../autorun multi recipes.tcl

When it finishes, you should able to see the result in Figure 3.2 As shown, the script stops the current
recipe run once it finds a revision that meets the recipe's goal, Total Negative Slack (TNS), of -2500ns
for the Hot Start recipe in this example. Next, it sets that revision as the parent revision for the next
recipe. This process repeats until the last recipe is run, or InTime meets the subsequent goal of TNS
=0ns.

Best Result: TNS of -731,301 in placament_effort_14from Job 10 495. met TNS goal of -2500ns
History Change 2:TNS ‘é'if:rst Sei::: t‘vg;‘:t ﬁﬁsr:t\nhdth Area Power Frmax Runtime 1S't:nrte - ©
v i@y -26040.72 pe9.002 -2.992 0121 0822 a1 1271 00:00:10 2017-05-261
v @ hot_start_1 77066 -2070.06 -2.360 -2369 0.091 0.807 o1 135.7 00:05:17 2017-05-261
w calibrate_25 2022, -B17.775 769 -1.769 0.043 0.809 21 150,76 00:06:29 2017-05-261
W calibrate_13 1948.25 -SQZ.MSMO.W 0.807 o1 144.76 00:04:19 2017-05-261 '
@ calibrate_38 1835.08 -055.68 -1,91 -1.910-0omet TNS goal of -1000ns 8 o0.0641 2017-05-261 | _
W calibrate_36 1696,72 -1144 -2.018 -2.018 0113 0.807 L 146,54 00:05:14 2017-05-261 £
W calibrate_39 167549 -1165.23 -2.074 -2.074 0.023 0816 84 145,79 00:05:29 2017-05-261
W calibrate_10 1661.26 -117946 -2.151 -2.151 0.000 0.815 91 144,65 00:05:04 2017-05-261

Figure 3. InTime result after example script run completed

Note: You can use intime.sh -help to find out more details about InTime command-line switches.

Run from Command-line
To run the Tcl script in a batch script or command line,

1. Extractan pin003 autorun multi recipes.zip

2. At command-line, change directory to eight bit uc quartusii 16p0_std where the
Quartus project is located

cd eight bit uc quartusii 16p0_std

3. Run the following command at the command line

For Linux

<intime installed dir>/intime.sh -project eight bit uc.gpf -mode batch -
s ../autorun multi_ recipes.tcl -toolchain quartusii -toolchain version 16.0.0 -
tclargs “-output dir <output directory>”"

For Windows

<intime installed dir>\bin\intime.exe -project eight bit uc.gpf -mode batch -
s ../autorun multi_ recipes.tcl -toolchain quartusii -toolchain version 16.0.0 -

tclargs “-output dir <output directory>”"

Application Notes: InTime

After running the script, you should see that it starts to compile the project as shown in Figure 4a.

Figure 4a. Output at command-line terminal after ran the example script

When the script runs finishes, it will output the results at the output directory. If you have not specify
the output dir option when executing the autorun multi recipes.tcl, then you should be
able to see a folder named results generated in the project directory

<working dir>/eight bit uc quartusii 16p0 std/results as shown in Figure 4b.
Otherwise, the results will be kept at the output directory that you specified.

Under the output directory, you should see pass or fail file. If the end goal is met, you should able
to see pass file in the output directory. Otherwise, you should see a fail file instead. The

best <job id> <strategy name>.tcl scriptis an exported strategy Tcl script which
reproduces the best timing result among the generated strategies.

Meanwhile, the folder export strategies tcl contains the exported strategy Tcl scripts of all the
other strategies that are compiled successfully.

Note that the output directory is cleaned up whenever this example script is executed. Please back up
this folder if necessary.

Figure 4b. Results directory after example script run completed

Understanding the example Tcl script

The autorun multi recipes.tcl example scriptis divided into five different parts:

A. Variable declaration for important information like the recipes to use, TNS goal, number of
runs per rounds, etc.

Application Notes: InTime

InTime flow configuration and recipe execution.

Results verification to either stop or execute subsequent recipes.
Export strategies to Tcl scripts.

Summarize and print results.

moow

Variable Declaration
Figure 5a describes what recipes to use and in what order of execution. In this example (Quartus), the
order of execution is:

Hot Start -> InTime Default -> Deep Dive -> Seed Effort Level Exploration

You can modify this sequence to use different recipes or to change the order of execution.

Define order of recipes to execute.
-> Type 'flow recipes -supported' in Tcl console to show all available recipe's name
set [project 1
if { [string "Scurrent toolchain" "quartusii"] } {
Execution Order : hot start > intime default > deep dive >
seeded effort level exploration

set [list "hot start" "intime default" "deep dive"
"seeded effort level exploration"]
} elseif { [string "Scurrent toolchain" "vivado"] } {

set [list "intime default" "deep dive" "vivado explorer"
"extra opt exploration"]
} else {

set [1ist "intime default"]

Figure 5a. Define recipes and their execution order

Figure 5b shows how to define the goals for Total Negative Slack(TNS), Worst Negative Slack (WNS)
for each recipe, number of runs per round, number of rounds. end tns goal contains the final TNS
goal. Upon reaching the final TNS goal, there can be various follow-on actions, for example generate
bitstream, copy files, and so on.

The recipe target result tns(..) defines a recipe goal that tells InTime to switch to a
subsequent recipe if it meets this TNS target. Typically, the earlier goals are set at a worse level
compared to the later goals.

Define end goal
set end tns goal 0
set end_wns_goal "*" ; #Don't Care

Define tns goal for each recipe run
set recipe target result tns(hot start) "-2500"

set recipe target result tns(intime default) "-1000"

set recipe target result tns(deep dive) "-500"

set recipe target result tns(auto placement) "O"

set recipe target result tns(sc rt level exploration) "0O"

set recipe target result tns(viv

set recipe target result tns(extr: "o"

Define runs per round for each recipe run

set recipe target runs p round(hot start) 50
set recipe target runs p round(intime default) 10
set recipe_target_runs_p_round(deep dive) 10

Application Notes: InTime

set recipe_target_runs_p_round(seeded effort level exploration) 10

set recipe target runs p round(au

set recipe target runs p round(vis explorer) 10
set recipe target runs p round(ex ration) 10
Define number of rounds for each recipe run

set recipe_target_rounds (hot start) 1

efault) 3

set recipe target rounds(intime

set recipe target rounds(deep

set recipe_target_rounds (s ort level exploration) 2
acement) 1
cer) 1

placement explo

set recipe_target_rounds(auto p
xpl

set recipe target rounds(viva

set recipe_target_rounds (vivadc ration) 1

set recipe target rounds(extra opt exploration) 1

Figure 5b. Define end goal, recipe goal, runs per round and rounds

Flow Execution and Configuration

The InTime flow configuration and recipe execution are outlined in Figure 5¢ and 5d. In Figure 5c,
flow reset is used to reset the internal flow history. It is a recommended practice to always reset
the internal flow history before running any recipe.

flow set <property> <value> isthe command to configure InTime flow settings. For example,
setting flow set control stop when goal metto true enables InTime to stop the current
running recipe when the goal is met. Otherwise, InTime allows the recipe to continue running even
after the goal is met.

Setting flow set control create bitstreamsto true enables bitstream files to be created
for every revision. Note: This takes up more time to complete each strategy.

Configure InTime Flow settings
-> Type 'flow properties' in Tcl console to shows all the available flow property to
configure

low reset ;
restore_defaults ;
set run_target local ;

ﬁg

Reset Intime internal flow

Restore all flow property to default value

Set to run strategies on local machine

set goal speed tns g Set goal type as speed tns for timing optimization
set concurrent runs 3 ; Number of builds to run in parallel

set control stop when goal met true ; # Stop current recipe run when goal is met
ow set control create_bitstreams false ; # Set to false to save compute time

H HH R W

Hh Hh Hh Fh Fh Hh

Figure 5c. InTime flow configuration

To start a recipe, use the command flow run recipe <recipe name> as shown in Figure 5d. If
the recipe run completes, the f1ow run recipe command returns O, otherwise it returns 1.

Run the current recipe
if { [catch { flow run_recipe Scurrent recipe }] } {

puts "ERROR: Recipe Scurrent recipe failed, continuing with the rest of the flow...
${::errorInfo}"

set recipe run fail 1

set return code 1

Figure 5d. Run recipe command

Application Notes: InTime

Results Verification

Figure 5e shows how to verify your result. In this section, the script checks if any revision in this round
meets the target goal. If yes, it stops, otherwise it continues to execute the subsequent recipes until
all user-defined recipes are executed.

Check if the end goal was met. Stop this script run if goal met

set job id [flow get local job_ id]

if { Sflow
puts "INFO: Checking results in $current recipe recipe run \(job $job id \) "

continue && !Srecipe run fail } {

res

lts clear

results add job $job id
set best revision name [lindex [results summary best -list] 0]
catch { strategy unset active }

catch { strategy set active Sbest revision name $job id }

set best revision tns [stra v results -field "TNS"]

set best revision wslack [strategy results -field "Worst Slack"]

puts "INFO: -> Best result in job \($job id\) is S$best revision name revision with
TNS = Sbest revision tns and Worst Slack = $best revision wslack "

if { [is _job met criteria $job id Send tns goal $end wns goall] } {

puts "INFO: -> Goal met! .. exiting optimization"

set flow continue 0
set goal met 1
}

Figure 5e. Verify the results of child revisions for each recipe run

Export Strategies into Tcl Scripts

Figure 5f shows how to export strategy settings for each strategy into a Tcl script. As shown in Figure
5f, the command strategy export <export tcl name> -script tcl isused to export
settings for the current strategy into a Tcl script file. In this example, the script only exports strategies
that compiled successfully, using the command results summary success -11ist to obtain alist
of such strategies. You must always set the “active strategy” using the command strategy

set active <strategy name> <job id> beforerunningthe strategy export
<export tcl name> -script tcl command.

Export strategies settings in tcl for success revisions
results clear
catch { strategy unset active }
set count 0
foreach id Sjobs ran {
results add job $id
set stratname list success [results summary success -list]
summary best -list] 0]

{

set best revname per job [lindex [results

foreach stratname 5 tname list succ

strategy set_active $stratname $id
strategy export "Sexport settings tcl dir/job${id} S${stratname}.tcl" -script tcl
catch { strategy unset_active }

}

Figure 5f. Export strategies that compiled successful into Tcl scripts

Application Notes: InTime

Results Summary
Lastly, print a summary of the results. Select all the relevant results using their job IDs: results add
job <job id>,then print revisions that compiled successfully via results summary success

and save the output into
<working dir>/eight bit uc quartusii 16p0_std/results/summary result.rpt

Export summary of results in summary result.rpt
foreach id $jobs ran {

results add job $id
}

set summary_ result [results summary success]
if { [catch { open Ssummary result rpt w } fh] } {
puts "ERROR: Couldn't open file: $fh"
set return_code 1
} else {
puts $fh "S$summary result"
catch { close $fh }

Figure 5g. Print summary of obtained results

Conclusion

InTime provides custom Tcl scripting capabilities to enable users to automate their InTime runs. For
more detailed information about the Tcl commands, please refer to the online reference at
http://www.plunify.com/docs/intime/flow_properties.html.

http://www.plunify.com/docs/intime/flow_properties.html

Application Notes: InTime

Document Revision History

Table 1. Revision history for this application note

No Date Changes Made
3 01 July 2017 1. Enabled autorun multiple recipes.tcl toreturn O if the
script runs OK otherwise, return 1.

2. Added option output dir for autorun_multiple_recipes.tcl script
to allow user to control the output directory path (Default:
<project directory>/results).

2 06 June 2017 1. Added version 2.0 of

an pin003 autorun multi recipes.zip.InVersion 2.0, the

following features are added into

autorun multi recipes.tcl:

e Generate pass or fail file to indicate if the end_goal was
met or not.

e Export strategies for those compiled successful into Tcl scripts.

e Generate a separate Tcl script for the strategy which gave the

best timing result.
e Generate a summary of results into a file named

summary result.rpt.

2. Added new sub-section "Export strategies into Tcl Scripts" under
"Understanding the example Tcl script".

3. Corrected typo for intime.sh path. The path should be
<intime installed dir>/intime.sh instead of
<intime installed dir>/bin/intime.sh

1 05 June 2017 Initial version

